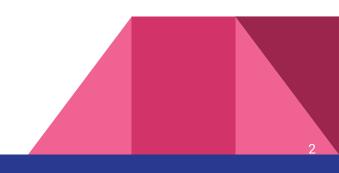
Salamander Robot Team (LM2) Proposal Presentation: Salamander-Inspired Rescue Robot for Low-Traversability Environments

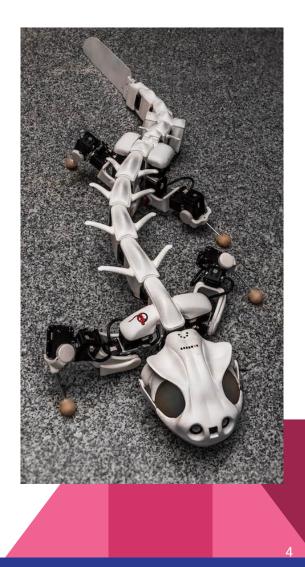

Austin Bush, Sunit Kulkarni, Hariank Mistry, Alex Popescu, Jonathan Rundquist, Shashwat Sitesh, Brian Weaver, Calvin Yao

Advisors: L.S. Milor (ECE), P.A. Vela (ECE), A.S. Jariwala (ME), M.L. Realff (MSE)

January 19, 2017

Outline

- I. Introduction
- II. Qualitative Goals
- III. Prior Work
- IV. Constraints & Limitations
- V. Quantitative Specifications
- VI. Design Approach
 - A. Fabrication
 - B. Foot Design
 - C. Interfacing
 - D. Control
- VII. Schedule
- VIII. Funding & Budget
 - IX. Team Organization Chart
 - X. Current Status


Introduction

- Disaster scenarios can present extreme terrain and operating conditions
- Rescue robots allow stakeholders to "sense and act at a distance from the site of a disaster or extreme incident"¹
- Unmanned ground vehicles (UGVs)
 - Search
 - Reconnaissance and mapping
 - Structural inspection
- A salamander-inspired UGV could provide mobility, stability, and portability

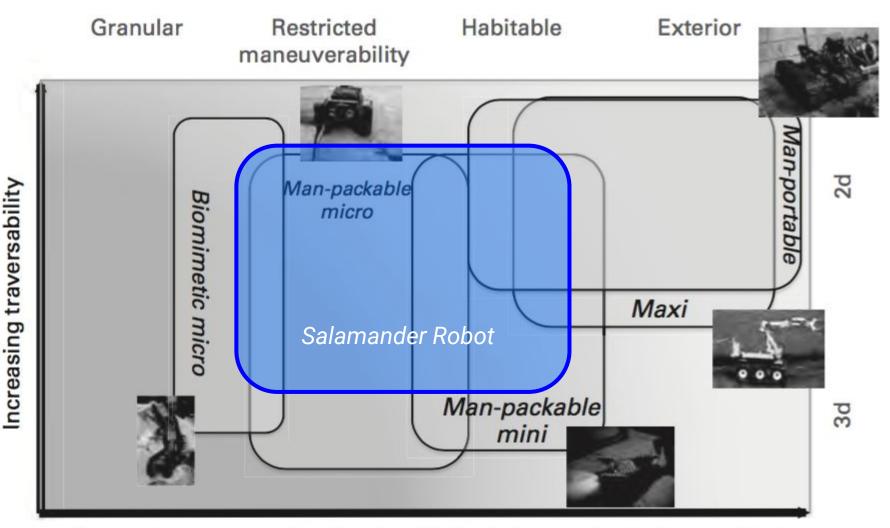
Qualitative Goals: Room for Improvement

- Currently used: ground & aerial robots, rescue dogs, microphones and cameras similar to endoscopic cameras
- Plan for improvement: Provide a system which can investigate faster, further, and more reliably than current systems
- Goal: Improve rescue response time and survival rate of disaster scenarios such as collapsed buildings
 - Build a prototype of salamander-inspired man-portable rescue robot
 - Evaluate potential of salamander-inspired unmanned ground vehicle (UGV) in a simulated disaster area

Prior Work

- Snakey (GT IVALab, Dr. Vela)
- Hexapod (RHex project)
- Biomimetic salamander robot
 from EPFL

Snakey (GT - IVALab)



EPFL Pleurobot

IRS Soryu robot

Rescue UGV Product Space

Increasing gross scale of region (E_{cd}) relative to physical agent (A_{cd})

Key Design Constraints & Limitations

- Small and agile enough to navigate under unknown rubble
- Light enough to be easily deployed to disaster environments
- Must be able to perform reliably in numerous disaster environments
- Must be an affordable addition to disaster response teams

Quantitative Robot Specifications

Minimum Viable Product

ltem	Specification		
Weight	< 25 kg		
Bounding volume	< 2 m x 0.5 m x 0.5 m		
Traversable terrain height deviation	> 5 cm		
Traversable grade	> 3 %		
Turn radius	< 2 m		
Traversal speed	> 10m / minute		
Man-portable	Yes		
Tether length	> 3 m		

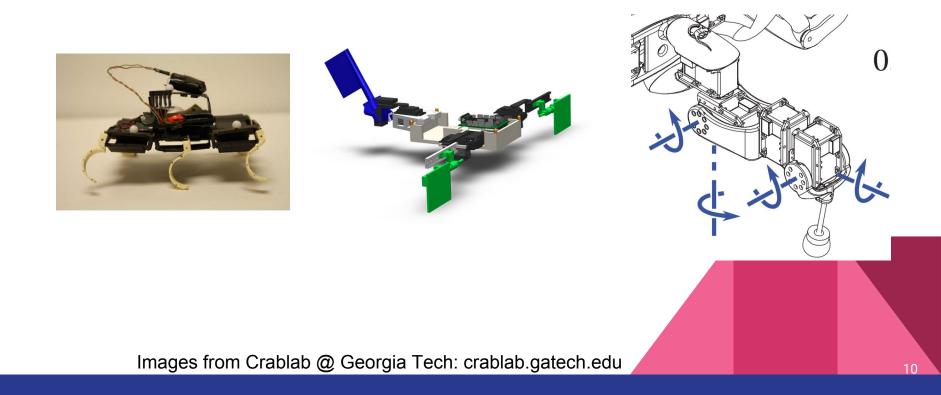
Possible Future Functionality

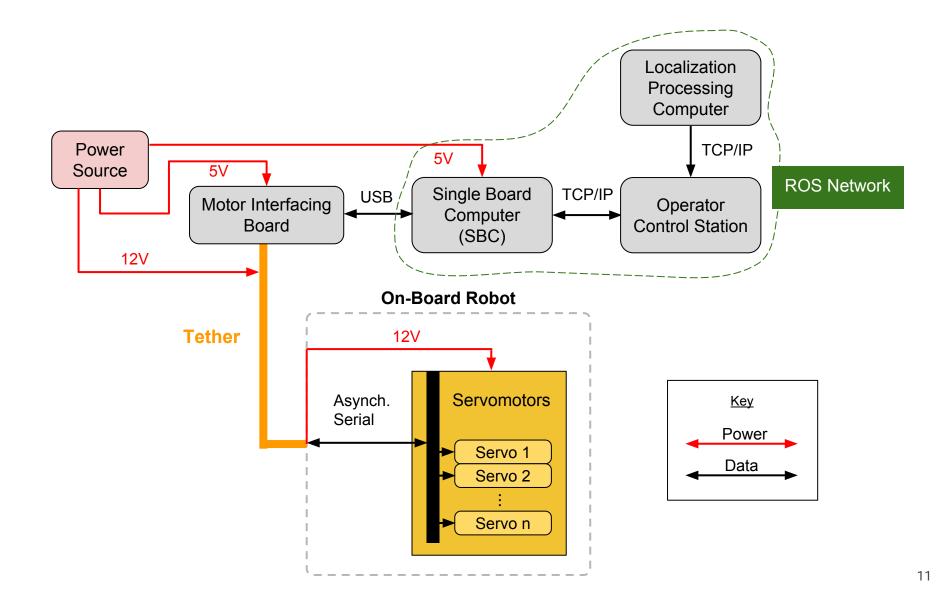
Obstacle avoidance
Autonomous searching
Camera-enabled localization
Environment mapping
Localization

Design Approach: Fabrication

• This robot is inspired by EPFL's Pleurobot and used their approach to the bio-mimicry of a salamander

• The Mechanical Team will design the robot to function using a 'spine' of servos with attached legs and tail to mimic the gait of a salamander.

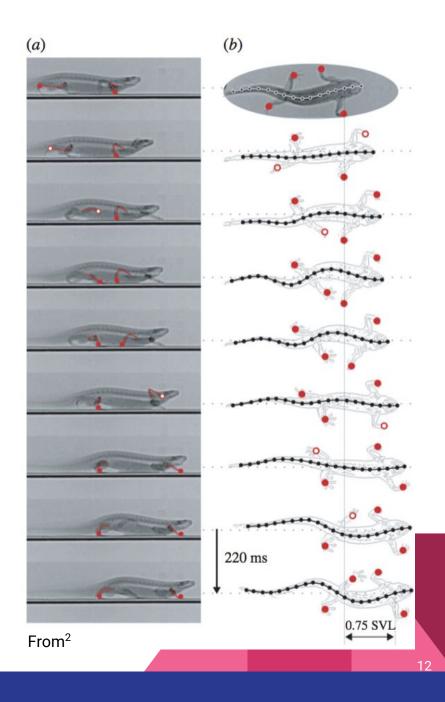

• Legs and Tail will be a combination of 3D printed parts and mechanical linkages to explore how to best traverse the terrain.



Design Approach: Foot Design

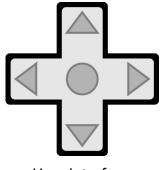
ME Team

• A significant amount of testing and research will be necessary to find the best foot design to traverse rough terrain, and climb through rubble

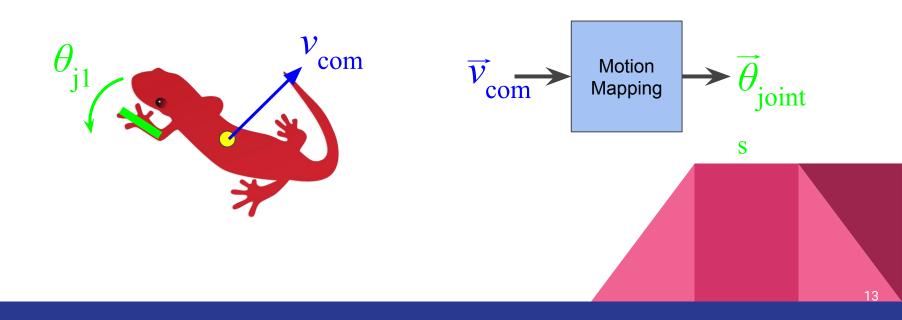


Control Approaches: Salamander Gait

- Biomimetic walkcycle replication
 - Adapt data from Pleurobot for modified salamander
 - Servo position control (PID)
- Trajectory planning¹
 - Inverse leg kinematics
 - Optimal control solver (Dr. Vela)
 - Discover gait pattern for walking over rubble


1. Manuel F. Silva et al. Fractional Order PD Joint Control of Legged Robots. 2006.

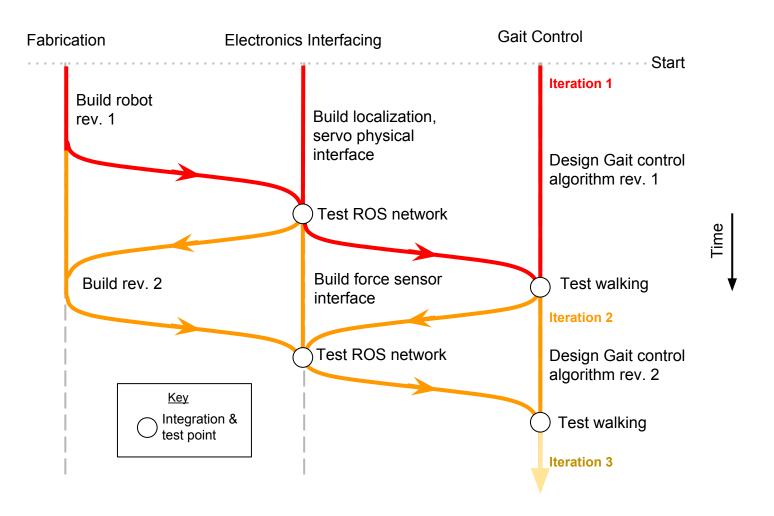
2. Karakasiliotis et al. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion. 2016.



Motion Mapping & User Interface

- Map gait trajectory to simple motion commands for operator control
- Empirically determined
- Depends on control approach chosen

User interface

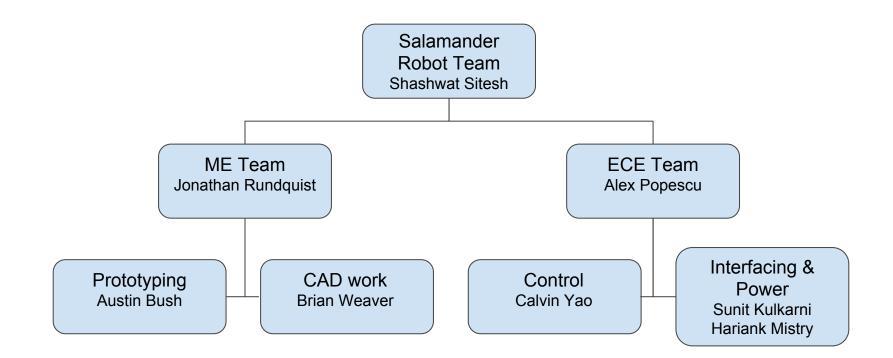


Schedule

	Janurary	February		March	April		May
	1/18 and 1/19		15-Feb	4-Mar		4/25-4/26	4-May
Proposal and Presentation							
Project Summary							
Begin Design Process							
Idea Generation							
CAD and 3-D print Skeleton							
Simulate Gait Control							
Interfacing electronics							
Start Purchasing and Building							
Intergrate electronics into body							
Integrate systems and controls							
Field testing, debugging							
Initial Website Posting							
Design Notebooks							
Completed website							
Final Project Report							
Final Project Demonstration							
Project Presentation							
Final Project Summary							
Capstone Design Expo							1
Teamwork and Professionalism							

14

3-Thread Project Planning Approach



Funding & Budget

Funding Source	Amount		
ECE Dept. (estimated)	\$800.00		
Total Funding	\$800.00		

Item	Unit Price	Quantity	Total Price
Dynamixel MX-28T Servomotor (Dr. Vela)	\$0.00	12	\$0.00
Dynamixel MX-64T Servomotor (Dr. Vela)	\$0.00	6	\$0.00
Raspberry Pi 3 Model B (senior design lab)	\$0.00	1	\$0.00
Dynamixel AX-12A Servomotor	\$44.90	6 (est.)	\$269.40
Tether materials (senior design lab)	\$0.00	-	\$0.00
3D printing material (ECE printer)	\$0.00	-	\$0.00
Total (\$269.40		

Team Organization Chart

Current Status

- Welcoming 5 new team members:
 - Jon, Austin, Hariank, Brian, Sunit
- Ironing out deliverables for ECE, ME, MSE majors
- Researching mechanical foot design options
- In process of revising proposal
- Discussing with Dr. Vela and Alex Chang (grad student)

Thank you! Questions?