Salamander Robot Team (LM2) Final Presentation:

Design and Control of a Highly-Articulated Salamander-Inspired Robot for Future Search and Rescue Applications

Austin Bush, Sunit Kulkarni, Hariank Mistry, Alex Popescu, Jonathan Rundquist, Shashwat Sitesh, Brian Weaver, Calvin Yao

Advisors: L.S. Milor (ECE), P.A. Vela (ECE), A.S. Jariwala (ME), M.L. Realff (MSE)

April 20, 2017

Outline

- I. Introduction
- II. Updated Goals
- III. Updated Specifications
- IV. Mechanical Design
 - A. Design Approach
 - B. Results & Verification
- V. Interfacing
 - A. Design Approach
 - B. Results & Verification
- VI. Controls
 - A. Design Approach
 - B. Results & Verification
- VII. Lessons Learned
- VIII. Future Work

Introduction

 Goal of presentation: present results and current status of project, as well as design choices and methodologies.

Current Status: A walking robot, ready for quantitative testing

Mechanical Design

Design and Fabrication of the Body, Feet, Tail, Head Jonathan Rundquist

Austin Bush

Brian Weaver

Sunit Kulkarni

Key Design Constraints & Limitations

- ✓ Small and agile enough to navigate under unknown rubble
- ✓ Light enough to be easily deployed to disaster environments
- Must be able to perform reliably in numerous disaster environments

 Needs more testing

Updated Specifications

Item	Design Specs	Actual Specs
Weight	< 25 kg	~5 kg
Bounding volume	< 2 x 0.5 x 0.5 m	0.63 x 0.41 x 0.2 m
Traversable terrain height deviation	> 5 cm	-
Traversable grade	> 3 %	-
Turn radius	< 2 m	1m (simulation)
Traversal speed	> 10m / minute	6m / min
Man-portable	Yes	Yes
Tether length	> 3 m	2.44 m

Possible Future Functionality

Obstacle avoidance

Autonomous searching

Camera-enabled localization

Environment mapping

Localization

Improvement on Past Designs

Increased Mobility

- 26 DOF adding more control to the robot
- Compliant feet increasing traversability
- Vertical mobility in the spine for increased maneuverability

Leg Design

Opposite but Linear Path

Independent but Radial Path

Spine Design

Talk about:

- Spine needed to be long enough to support the desired walking gait (lgs don't run into each other)
- 6 joints in total (without tail)
- Spine needed more vertical mobility for stairs and such
- Two vertical motors were mounted to the spine, giving larger walking range and vertical movement

Concept Generation

- Group effort to create a multitude of possibilities
- Not all concepts were practical
- Needed a way of attaching numerous foot designs for testing

Interfacing

- Developed the Foot Attachment Point models
- Several different iterations as robot design evolved
- Allowed for easy iteration of foot designs

Recycled Ball Feet

- Made of half a Lacrosse ball
- Good traction on flat surfaces
- Easy to develop gaits

Bio inspired rigid

- Good balance
- Potential climbing modification
- Requires more complex gaits

Compliant advanced design

- Good off road performance
- Still in prototype phase

Head and Tail

Head

Houses camera, speaker and mic

Improves stability

Can grow to house hardware in the future

Tail

 Improves walking and climbing stability

Interfacing

Hardware Development for Control and Operation of the Robot

Shashwat Sitesh

Hariank Mistry

System Diagram **Operator Control Station** Computer Control program Power Source **ROS Network** USB Serial Dynamixel 12V **Motor Interfacing** Controller Manager USB/Serial Board **On-Board Robot Tether** 12V Servomotors <u>Key</u> Power Servo 1 Data Servo 2 Asynch. Serial Servo n

Hardware Interfacing

 OpenCM 9.04 Microcontroller mounted on OpenCM 485 Expansion Pack to connect to the dynamixel servo

FT23R USB to Serial Interface Board

 USB2Dynamixel used to update firmware and baudrate

Hardware Interfacing

 RoboPlus is a PC based tool that can be used to set parameters

Hardware Interfacing

Software Interfacing: ROS

 Use Dynamixel ROS Stack: Python and C++ Interface for communicating to motors via serial commands

 Motors are controlled with an Action Server, which coordinates sending position and velocity commands

 ROS interface is modular and extendable so future robot users can easily program custom trajectories

Connect to **Dynamixel Bus** Meta Controller **Action Controller** w/ Sim. Data

Power Tether

- Built 3m long tether using 20 gauge wire
- Capable of providing approximately 6A of current and 72W of power
- Depending on the gait algorithm, more power may be required to control more motors at once

Controls

Salamander Gait Control

Alex Popescu

Calvin Yao

Design Approach: Kinematic Modeling

- MATLAB kinematic modeling of legs
- Spine movement with "locking down" feet
- Optragen optimization

Dynamics Modeling and Simulation

- Benefits of simulation
 - No possibility of robot damage
 - 2-5X faster than real-time, parallelized processing
 - No cost to purchase parts
- Gazebo dynamics simulation can simulate
 - PID control of motors
 - Different foot geometries
 - Foot slippage and ground reaction forces
 - Complicated terrain
- Control of each joint is achieved using a custom C++ shared library "plugin"

Gait Parameterization

- Used 19 numbers to represent a gait
 - Spine amplitude, phase
 - For each leg:
 - J1 amplitude, phase, bias
 - J2 amplitude, phase
 - J4 amplitude, phase, bias
- Each joint is a sine wave with 3 parameters: bias, amplitude, and phase

Gait Optimization with Genetic Algorithm

- Benefits of Genetic Algorithms (GA):
 - Robust to many local minima in objective function
 - Objective fn. derivative unknown
 - Works for non-smooth functions

$$f = (\xi - \xi_{goal})^2 - C_{energy}$$

Results: Simulation vs. Experiment

Simulation: 0.5x speed Real video: 1.5x speed

Current Task: Operator Control

- Map goal twist xi to a gait parameter vector
- Linearly interpolate between known gaits
- Then, an operator can command the robot twist
- Joystick control: demo goal

Lessons Learned

Check orientation of servos before installation

Future Work

- Compliant tail
- More complex feet
- Better physics models
- Energy-efficiency optimization
- Feedback control using sensors
- Approach rescue robotics application

Thank you! Questions?