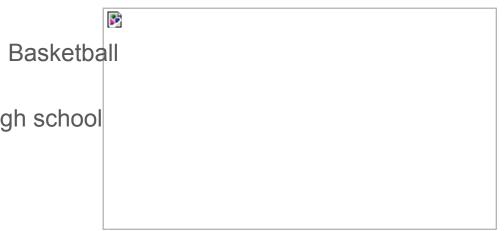
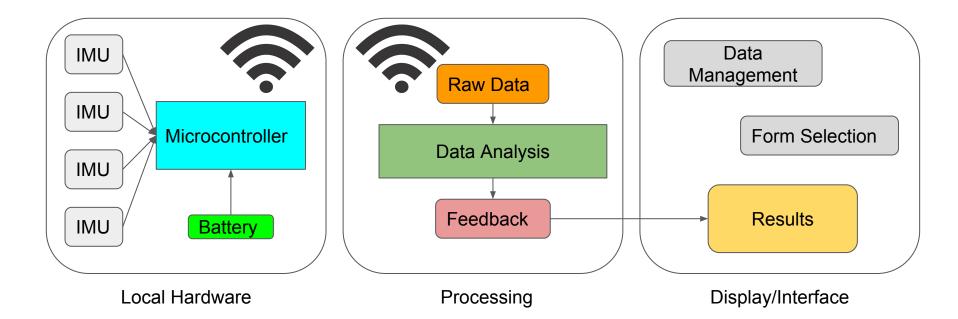
Free Throw Form Analytics


Edison Carrick, Adam Jackson, Kyle Kizirian, Patrick Miller, Mickeal Taylor

Introduction/Motivation


- How can we give feedback to users in order to train more intelligently?
- The system must be
 - Portable
 - Easy to use
 - Low-cost
 - Non-intrusive

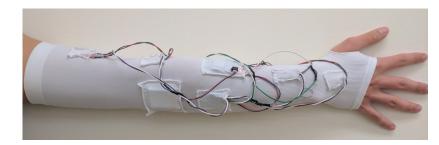
Introduction

- Objective was to create a wearable device that will track the motion of a shooter's free throw shots and provide feedback on their form
- This will allow the players to receive feedback on their form without the need for a coach to be there
- Target Audience High school Basketball Players
- Cost affordable for serious high school basketball players

Design Approach - Overview

What Happened

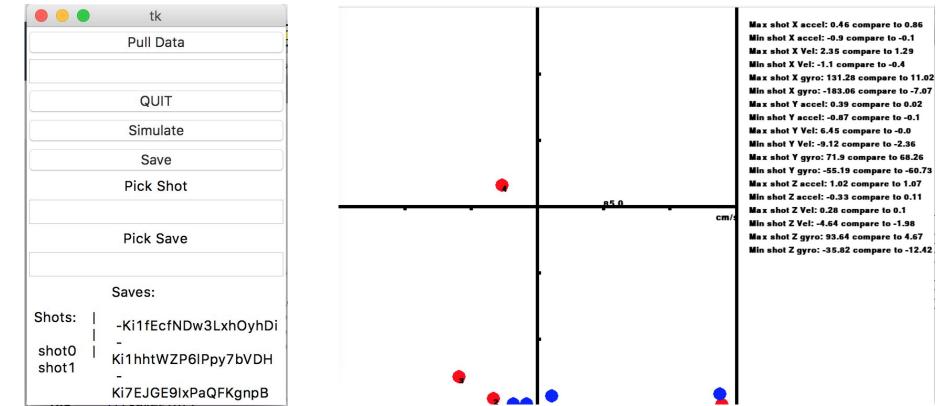
- Created lightweight, portable, and easy-to-use sleeve
- Met goals on data collection, battery life, and feedback to users
- Created user interface for users to obtain feedback on free throw shot


Data Collection

- Used sensor datasheet to build data collection and transmission software
- Early functionality tried to read, convert, filter, and transmit
- First major obstacles: memory limit, sampling speed, clock speed
- Final code for microcontroller is optimized for data collection speed nothing occurs during recording beyond collecting sensor data and writing to flash
- System connects to wifi on first button click, and records on second

Sleeve Construction

- Pockets used to hold components allow for expanding
- Markings for wrist bone and elbow to have consistent IMU Placement
- Battery position
- Sewing on pockets easier with manakin or wearing arm
- Future: wrap components in plastic to limit sleeve deterioration, elastic thread
- Measurements for sensor position


ltem	Quantity	Cost
Sleeve	1	\$8.50
IMU	4	\$14.95
Microcontroller	1	\$15.95
Multiplexer	1	\$6.95
Battery	1	\$9.95
Total		101.15

Data Processing

- Data is first filtered using a low pass filter to remove noise
- Scans for a moment in which all sensors are parallel to the ground and motionless
- Gyroscope bias is removed, and initial position and orientation are calculated based on the data from that moment
- Velocity and orientation are then calculated using Euler discrete integration

Creating User Interface - Mickeal

Meeting Specifications

Attribute	Proposed Specification	Prototype Specification
Battery Life	>2 hrs	>3.5
Sampling Rate	30-60 Hz	33 Hz
Linear Acceleration Range	±15 g	Up to ±15 <i>g</i>
Linear Acceleration Accuracy	± 1 mg	± 1 mg
Rotational Velocity Range	± 1500 dps	Up to ±2000 dps
Rotational Velocity Accuracy	± 100 mdps	± 100 mdps
Spatial Data Points	4	4 IMUs
Sensor Communication	12C	I2C
Interface	Web Application	Python Software Application

Meeting Specifications

Proposal Shall	Result
be a wearable sleeve	Sleeve is fully functional and wireless.
fit average young adult males	13 inches (flexed) [1], sleeve expands to 25 inches
transmit data from the sleeve wirelessly	Sleeve Transmits Via Wi-Fi (802.11 b/g/n)
not restrict normal arm movement in any considerable way	Range of motion tests passed from physical therapy checklist [2]
start and stop shot recording with the press of a button	Prototype has button for control
be built with a wireless enabled microcontroller package	Microcontroller has built-in Wi-Fi

[1]"Are You an Average Man?", Elitefeet.com, 2017. [Online]. Available: http://www.elitefeet.com/are-you-an-average-man. [2]Washington State DSHS, "Range of Joint Motion Evaluation Chart", 2014.

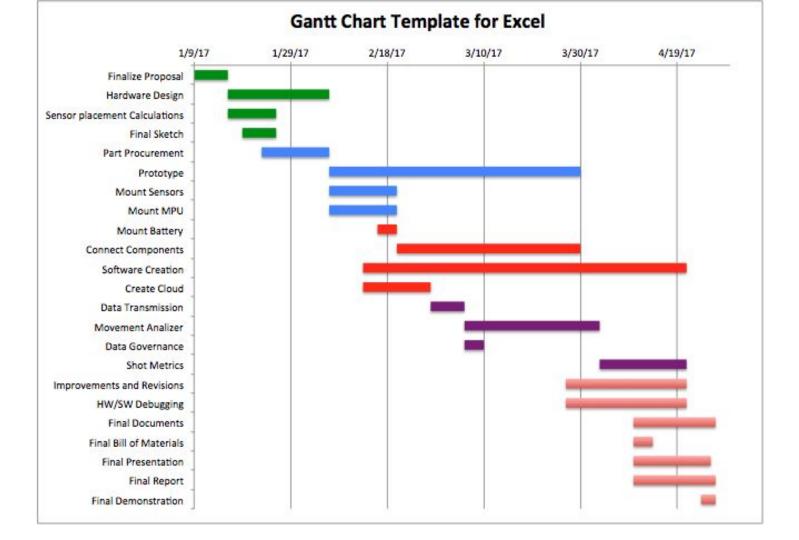
Meeting Specifications

Proposal Shall	Result
display an RGB LED that provides device status indication	RGB found to be unnecessary, on-board LED used instead
be powered using a rechargeable lithium ion battery	Prototype uses 800 mAh lithium ion battery
operate for a minimum of 2 hours	Tested to operate at least 3.5 hours
operate from -20°C to 60°C	All components rated -20°C to 60°C minimum operating rage. (Battery charging minimum 0°C)
save form data locally for future comparison	Software application saves shots into cloud database
allow users to select a primary comparison form	Software application allows users to compare any two shots

Wills

- allow the user to visually compare free throw forms Partially met.
- operate in real time Not met.
- save data to the cloud for the user to access from any device Met.
- provide feedback accessible on any browser Not met.

Challenges


- Had to write library to communicate with sensors from datasheet directly
- Original data reading was very slow, had to optimize code for reading sensors
- Microcontroller only supports slower I2C speeds
- Microcontroller only has 44 kb of RAM, had to optimize for storage

Challenges

- Not able to collect data quickly enough to use acceleration to recreate position
- Ideal would be better sampling rate or IMUs without gravity
- Special Euclidean groups combine position and orientation to estimate each sensor's configuration, and then gravity is removed from acceleration measurements based on sensor orientation
- Inherent error and low sampling rate cause error to build in orientation estimate; position calculations suffer from gravity itself as well as the attempt to correct for it

Scheduling

- Hardware to Hardware integration took much longer than anticipated
- Hardware issues caused increased shipping time and multiple parts orders
- This slowdown in production made it difficult to correct late stage issues
- Tried to create software and hardware in parallel but software production reached a bottleneck when actual shot data was necessary
- Creation of useful metrics became a challenge with time constraints

Future Work

- We believe challenges that we faced in recreating position can be solved with better hardware
- Recommend future teams looking into IMUs that report linear acceleration and remove gravity bias in hardware
- Recommend a microcontroller that supports faster I2C speeds for better sampling rate
- Recommend having feedback supported via web or mobile app so users can obtain instant feedback

Adafruit IMU with Linear Acceleration Capability

Future Work

- Many additional possibilities exist for motion tracking using IMUs
- Once some of these challenges are overcome, can easily be expanded to additional sports
- Great possibilities in medical, veterinarian, and physical rehabilitation applications